
CS 4530: Fundamentals of Software Engineering
Module 7.2: Software Development Processes

Adeel Bhutta and Mitch Wand

Khoury College of Computer Sciences

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson

• At the end of this lesson, you should be able to
• Know the basic characteristics of the waterfall software 

process model

• Be able to explain when the waterfall model is 
appropriate and when it is not

• Understand how the waterfall and agile models manage 
risk

• Be able to explain how agile process instill quality, 
including through test driven development

2



Review:
How to make sure we are building the right thing

3

Requirements 
Analysis

Planning & 
Design

Implementation



Software Process: Code + Fix

4

Build First

Version

Retirement

Operations

Modify until

Customer satisfied



A brief history of software planning

5

•Software was very inefficient
•Software was of low quality
•Software often did not meet requirements
•Projects were unmanageable and code difficult to maintain
•Software was never delivered

A call to action: We 
must study how to 
build software

NATO conference on Software Engineering + Outcomes



Software Process: Waterfall (~1970)

6

systematic, sequential approach

Quality Assurance at each phase before 
continuing

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design



Waterfall Model: Risk Assumptions

7
Communication Planning Modeling Construction Deployment

R
el

at
iv

e 
C

o
st

 t
o

 F
ix

 D
ef

ec
t

The cost to fix a defect grows exponentially with each development phase



Waterfall Process Improves on Code + Fix

• Measurable progress with risk contained in each 
phase

• Possible to estimate each phase based on past 
projects

• Division of labor: Natural segmentation between 
phases

8

Requirements

Validate

Retirement

Operations

Test

Implementation

Verify

Design



Waterfall Model 
adds process 
overhead

Since formal quality assurance 
happens at each phase, it’s 
necessary to produce extremely 
detailed…

• Requirements documents

• Design documents

• Source code with 
documentation

9



Waterfall Model 
Reduces Risk by 
Preventing 
Change

Traditional waterfall model: no way 
to go back “up”



Waterfall Model: Applications

• What projects would this work well in?
• Projects with tremendous uncertainty

• Projects with long time-to-market

• Projects that need extensive QA of requirements 
and design

• Projects for which the expense of the planning is 
worth it

• Classic examples: military/defense
• Warship that needs to have component interfaces last 80 

years

• Spacecraft?

11



Waterfall Model produced Wasted Work 
Product

• Wasted productivity can occur through each 
phase’s QA process:
• Requirements that become obsolete
• Elaborate architectural designs never used
• Code that sits around not integrated and tested in 

production environment, eventually discarded
• Documentation produced per requirements, but 

never read

• What if we could eliminate that waste, and 
reduce the cost of defects later in 
development cycle?
• Example: with shorter time-to-market?

12



Iterative Process (~1980s) are Waterfall 
Variations

13

Initial Concept

Operations

Acceptance 
Testing

and Delivery

Requirements 
and Iteration

Planning

Next Iteration

Design and
Implement 



The Agile Model Reduces Risk by Embracing 
Change (~2000)

• The Waterfall philosophy: 
• "The project is too large and complex, and it will take 

months (or years!) to plan, so once we come up with the 
plan, that plan can not change" 

• Reduce risk by proceeding in stages

• The Agile philosophy:
• The project is too large and complex, it is unlikely that 

we will know exactly what we need right now, and to 
some extent, we are inventing something new. We think 
that as we make it, we will figure it out as we go”

• Reduce risk by limiting time on any one stage; then 
reassess. (“time-boxing”)

14



Agile Manifesto

15

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org

Individuals and interactions

Working software

Customer collaboration

Responding to change

over processes and tools

over comprehensive documentation

over contract negotiation

over following a plan



Warning: Agile can be a buzzword

16



Agile Values Embrace Change

Compare to problems in waterfall:

• Requirements that become obsolete
• Don’t make detailed requirements until you need them

• Elaborate architectural designs never used
• Don’t design until you need

• Code that sits around not integrated and tested in 
production environment, eventually discarded
• Integrate and test continuously

• Documentation produced per requirements, but never 
read
• Don’t require documentation

17

Or only as much documentation 
as you really need.



Agile Practice: Everyone is Responsible for 
Quality

• “Collective ownership”

• Requirements (user stories) are developed 
collaboratively with customer, and are negotiable 
(INVEST qualities)

• Functional and non-functional correctness is checked 
on the cheap, and often

• Developers improve code anywhere in the system if 
they see the opportunity

• Many parallels with “Toyota Process System;” a variety 
of other software processes developed in the 90’s share 
these basic values

18



Agile requires quality assurance processes

• Quality is everyone’s responsibility

• Multiple processes work together to ensure quality: 
• unit testing/TDD

• mix of unit tests & integration tests (we'll see more of this)

• code review

• continuous integration 

• continuous deployment (A/B, canaries, etc.)

• quality includes non-functional requirements (resource 
consumption, response time) or generally speaking extensibility, 
maintainability, etc. 

19



Agile Empowers Workers to Improve Processes: 
Toyota Production System (1990’s)



Agile Processes are Iterative

21

Initial Concept

Operations

Acceptance 
Testing

and Delivery

Requirements 
and Iteration

Planning

Next Iteration

Design and
Implement 

Agile Process Model

Iterative Waterfall Model

Key Idea: Small Continuous Releases



Agile Processes Reduce Risk by Time Boxing

• Each “iteration” is called a “sprint”

• Each sprint has a fixed duration

• Scope of features in a sprint is determined 
by the team

• Key insight: planning might be a guess at 
first, but gets better with time

• More on agile planning & estimation in 
the next module

22



Agile Practice: Test Driven Development 
(TDD)

23

User story & 
conditions of 
satisfaction

1. Start here

2. Write a test

3. Write code

4. Refactor design

5. Strengthen 
Test

Failing 
Test

Passing 
Test

Passing 
Test, 

better 
design



Code Review is Agile Practice

• A code review is the process in which 
the author of some code is asked to 
explain it to their peers:
• What purpose the code has;

• How the code accomplishes this purpose;

• How the author is confident of this 
information,
• E.g., show results of running tests (CI results)

• A code review often concerns a code 
change (“diff”)



Agility and You

25

• In your project, you can display agility in some of the following ways:
• Renegotiate specs

• Reorder priorities

• Alter implementation strategy

• Improve team communication patterns

• If you are agile, you can adjust these things to deliver your product on 
time and get a good grade ☺



Learning Goals for this Lesson

• At the end of this lesson, you should be able to
• Know the basic characteristics of the waterfall software 

process model

• Be able to explain when the waterfall model is 
appropriate and when it is not

• Understand how the waterfall and agile models manage 
risk

• Be able to explain how agile process instill quality, 
including through test driven development

26


	Module 07.2 Software Process
	CS 4530: Fundamentals of Software Engineering�Module 7.2: Software Development Processes
	Learning Goals for this Lesson
	Review:�How to make sure we are building the right thing
	Software Process: Code + Fix
	A brief history of software planning
	Software Process: Waterfall (~1970)
	Waterfall Model: Risk Assumptions
	Waterfall Process Improves on Code + Fix
	Waterfall Model adds process overhead
	Waterfall Model Reduces Risk by Preventing Change
	Waterfall Model: Applications
	Waterfall Model produced Wasted Work Product
	Iterative Process (~1980s) are Waterfall Variations
	The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile Manifesto
	Warning: Agile can be a buzzword
	Agile Values Embrace Change
	Agile Practice: Everyone is Responsible for Quality
	Agile requires quality assurance processes
	Agile Empowers Workers to Improve Processes: Toyota Production System (1990’s)
	Agile Processes are Iterative
	Agile Processes Reduce Risk by Time Boxing
	Agile Practice: Test Driven Development (TDD)
	Code Review is Agile Practice
	Agility and You
	Learning Goals for this Lesson


